We study multi-moment maps on nearly Kähler six-manifolds with a two-torus symmetry. Critical points of these maps have non-trivial stabilisers. The configuration of fixed-points and one-dimensional orbits is worked out for generic six-manifolds equipped with an SU (3) -structure admitting a two-torus symmetry. Projecting the subspaces obtained to the orbit space yields a trivalent graph. We illustrate this result concretely on the homogeneous nearly Kähler examples.