Aarhus University Seal / Aarhus Universitets segl

Motivic Donaldson–Thomas invariants of parabolic higgs bundles and parabolic connections on a curve

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Roman Fedorov, University of Pittsburgh
  • ,
  • Alexander Soibelman
  • ,
  • Yan Soibelman, Kansas State University

Let X be a smooth projective curve over a field of characteristic zero and let D be a non-empty set of rational points of X. We calculate the motivic classes of moduli stacks of semistable parabolic bundles with connections on (X, D) and motivic classes of moduli stacks of semistable parabolic Higgs bundles on (X, D). As a by-product we give a criteria for non-emptiness of these moduli stacks, which can be viewed as a version of the Deligne–Simpson problem.

OriginalsprogEngelsk
Artikelnummer70
TidsskriftSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Vol/bind16
Antal sider49
ISSN1815-0659
DOI
StatusUdgivet - jan. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 197100604