More about Wilson’s functional equation

Henrik Stetkær*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

10 Citationer (Scopus)
53 Downloads (Pure)

Abstract

Let G be a group with an involution x↦ x, let μ: G→ C be a multiplicative function such that μ(xx) = 1 for all x∈ G, and let the pair f, g: G→ C satisfy that f(xy)+μ(y)f(xy∗)=2f(x)g(y),∀x,y∈G.For G compact we obtain: If g is abelian, then f is abelian. For G nilpotent we obtain: (1) If G is generated by its squares and f≠ 0 , then g is abelian. (2) If g is abelian, but not a multiplicative function, then f is abelian.

OriginalsprogEngelsk
TidsskriftAequationes Mathematicae
Vol/bind94
Nummer3
Sider (fra-til)429-446
Antal sider18
ISSN0001-9054
DOI
StatusUdgivet - jun. 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'More about Wilson’s functional equation'. Sammen danner de et unikt fingeraftryk.

Citationsformater