Moderately elevated extracellular [K+] potentiates submaximal force and power in skeletal muscle via increased [Ca2+]i during contractions

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


The extracellular K+ concentration ([K+]o) increases during physical exercise. We here studied whether moderately elevated [K+]o may increase force and power output during contractions at in vivo-like subtetanic frequencies and whether such potentiation was associated with increased cytosolic free Ca2+ concentration ([Ca2+]i) during contractions. Isolated whole soleus and extensor digitorum longus (EDL) rat muscles were incubated at different levels of [K+]o, and isometric and dynamic contractility were tested at various stimulation frequencies. Furthermore, [Ca2+]i at rest and during contraction was measured along with isometric force in single mouse flexor digitorum brevis (FDB) fibers exposed to elevated [K+]o. Elevating [K+]o from 4 mM up to 8 mM (soleus) and 11 mM (EDL) increased isometric force at subtetanic frequencies, 2-15 Hz in soleus and up to 50 Hz in EDL, while inhibition was seen at tetanic frequency in both muscle types. Elevating [K+]o also increased peak power of dynamic subtetanic contractions, with potentiation being more pronounced in EDL than in soleus muscles. The force-potentiating effect of elevated [K+]o was transient in FDB single fibers, reaching peak after ~4 and 2.5 min in 9 and 11 mM [K+]o, respectively. At the time of peak potentiation, force and [Ca2+]i during 15-Hz contractions were significantly increased, whereas force was slightly decreased and [Ca2+]i unchanged during 50-Hz contractions. Moderate elevation of [K+]o can transiently potentiate force and power during contractions at subtetanic frequencies, which can be explained by a higher [Ca2+]i during contractions.

TidsskriftAmerican journal of physiology. Cell physiology
Sider (fra-til)C900-C909
StatusUdgivet - nov. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 169340778