Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming

Stefanie Koster, Rajendra Kumar Gurumurthy, Naveen Kumar, Pon Ganish Prakash, Jayabhuvaneshwari Dhanraj, Sofia Bayer, Hilmar Berger, Shilpa Mary Kurian, Marina Drabkina, Hans-Joachim Mollenkopf, Christian Goosmann, Volker Brinkmann, Zachary Nagel, Mandy Mangler, Thomas F Meyer, Cindrilla Chumduri*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.

OriginalsprogEngelsk
Artikelnummer1030
TidsskriftNature Communications
Vol/bind13
Antal sider15
ISSN2041-1723
DOI
StatusUdgivet - 24 feb. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming'. Sammen danner de et unikt fingeraftryk.

Citationsformater