Aarhus Universitets segl

Mixing Properties of Multivariate Infinitely Divisible Random Fields

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

In this work we present different results concerning mixing properties of multivariate infinitely divisible (ID) stationary random fields. First, we derive some necessary and sufficient conditions for mixing of stationary ID multivariate random fields in terms of their spectral representation. Second, we prove that (linear combinations of independent) mixed moving average fields are mixing. Further, using a simple modification of the proofs of our results, we are able to obtain weak mixing versions of our results. Finally, we prove the equivalence of ergodicity and weak mixing for multivariate ID stationary random fields.

OriginalsprogEngelsk
TidsskriftJournal of Theoretical Probability
Vol/bind32
Nummer4
Sider (fra-til)1845-1879
Antal sider35
ISSN0894-9840
DOI
StatusUdgivet - 1 dec. 2019
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 180406072