Metric geometries over the split quaternions

A. S. Dancer*, Helge Riis Jørgensen, A. F. Swann

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisReviewForskningpeer review

17 Citationer (Scopus)

Abstract

We give an overview of some recent results in hypersymplectic and para-quaternionic Kähler geometry, and introduce the notion of split three-Sasakian manifold. In particular, we discuss the twistor spaces and Swann bundles of para-quaternionic Kähler manifolds. These are used to classify examples with a fully homogeneous action of a semi-simple Lie group, and to construct distinct para-quaternionic Kähler metrics from indefinite real analytic conformal manifolds. We also indicate how the theory of toric varieties gives rise to constructions of hypersymplectic manifolds.

OriginalsprogEngelsk
TidsskriftRendiconti del Seminario Matematico
Vol/bind63
Nummer2
Sider (fra-til)119-139
Antal sider21
ISSN0373-1243
StatusUdgivet - 1 dec. 2005
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Metric geometries over the split quaternions'. Sammen danner de et unikt fingeraftryk.

Citationsformater