Abstract
Experiments in quartz ampoules that simulate the saltation of quartz grains in a methane atmosphere show that the solid phase acquires a reddish color, reminiscent of the color observed on Triton, Pluto, and Charon. Reflection spectroscopy of the coated grains show a wide, continuous absorption spectrum peaking at near-UV wavelengths, in line with the reddish color. X-ray photoelectron spectroscopy indicates the grains are coated with a substance containing C–C and C–O bonds, and estimates the average thickness of the surface layer to 2.3 Å. Solid state Raman measurements of the coating shows a transition at 1540 cm−1. A model is proposed to describe these measurements. The model is a polydiene, anchored to the quartz surface. Electron structure calculations show that a polydiene with around 8 CH units reproduces the measurements. AFM-IR experiments support this result. Our findings suggest a pathway for synthesis of complex molecules with C[dbnd]C bonds on planets and moons with a solid surface and a methane-containing atmosphere.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 115023 |
Tidsskrift | Icarus |
Vol/bind | 382 |
ISSN | 0019-1035 |
DOI | |
Status | Udgivet - aug. 2022 |