Aarhus Universitets segl

Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • L Schmüser
  • M Trefz, University Medical Centre Mainz, Mainz, Germany
  • ,
  • S J Roeters
  • W Beckner, Univ Washington, University of Washington, University of Washington Seattle, University of Washington Tacoma, Dept Biol Oceanog
  • ,
  • J Pfaendtner, Univ Washington, University of Washington, University of Washington Seattle, University of Washington Tacoma, Dept Biol Oceanog
  • ,
  • D Otzen
  • S Woutersen, University of Amsterdam
  • ,
  • M Bonn, Max-Planck Institute for Polymer Research, Mainz
  • ,
  • D Schneider, University of Mainz
  • ,
  • T Weidner

High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF), an aquaporin membrane channel finely tuned to selectively transport water and glycerol molecules across the membrane barrier. We find subtle but significant differences between the XRD structure and the inferred in situ structure of GlpF.

OriginalsprogEngelsk
TidsskriftLangmuir : the ACS journal of surfaces and colloids
Vol/bind37
Nummer45
Sider (fra-til)13452-13459
Antal sider8
ISSN0743-7463
DOI
StatusUdgivet - nov. 2021

Se relationer på Aarhus Universitet Citationsformater

ID: 225601942