Abstract
Let T be a 2-Calabi–Yau triangulated category, T a cluster tilting object with endomorphism algebra Γ. Consider the functor T(T,−):T→modΓ. It induces a bijection from the isomorphism classes of cluster tilting objects to the isomorphism classes of support τ-tilting pairs. This is due to Adachi, Iyama, and Reiten. The notion of (d+2)-angulated categories is a higher analogue of triangulated categories. We show a higher analogue of the above result, based on the notion of maximal τ d-rigid pairs.
| Originalsprog | Engelsk |
|---|---|
| Tidsskrift | Journal of Algebra |
| Vol/bind | 546 |
| Sider (fra-til) | 119-134 |
| Antal sider | 16 |
| ISSN | 0021-8693 |
| DOI | |
| Status | Udgivet - 15 mar. 2020 |
| Udgivet eksternt | Ja |