Aarhus Universitets segl

Managing Event Oriented Workflows

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

  • David Marchant, Københavns Universitet
  • ,
  • Rasmus Munk, Københavns Universitet
  • ,
  • Elise O. Brenne, Danmarks Tekniske Universitet
  • ,
  • Brian Vinter

This paper introduces an event-driven solution for modern scientific workflows. This novel approach enables truly dynamic workflows by splitting them into their constituent parts, defined using combinations of Patterns and Recipes, and lacking any meaningful inter-dependencies. The theory behind this system is set out, and an example workflow is presented. A python package mig-meow, which implements this workflow system is also shown and explained. The use cases of various user groups are considered to asses the feasibility of the design, and it is found to be sufficient, especially in light of recent workflow requirements for dynamic looping, optional outputs and in-The-loop interactions.

OriginalsprogEngelsk
TitelProceedings of XLOOP 2020 : 2nd Annual Workshop on Extreme-Scale Experiment-in-the-Loop Computing, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis
Antal sider6
ForlagIEEE
Udgivelsesårnov. 2020
Sider23-28
Artikelnummer9307825
ISBN (Elektronisk)9780738110721
DOI
StatusUdgivet - nov. 2020
Begivenhed2nd IEEE/ACM Annual Workshop on Extreme-Scale Experiment-in-the-Loop Computing, XLOOP 2020 - Virtual, Atlanta, USA
Varighed: 12 nov. 2020 → …

Konference

Konference2nd IEEE/ACM Annual Workshop on Extreme-Scale Experiment-in-the-Loop Computing, XLOOP 2020
LandUSA
ByVirtual, Atlanta
Periode12/11/2020 → …
SerietitelProceedings of XLOOP 2020: 2nd Annual Workshop on Extreme-Scale Experiment-in-the-Loop Computing, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis

Bibliografisk note

Publisher Copyright:
© 2020 IEEE.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Se relationer på Aarhus Universitet Citationsformater

ID: 217337619