Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS

Travis S. Metcalfe, Jennifer L. Van Saders, Sarbani Basu, Derek Buzasi, Jeremy J. Drake, Ricky Egeland, Daniel Huber, Steven H. Saar, Keivan G. Stassun, Warrick H. Ball, Tiago L. Campante, Adam J. Finley, Oleg Kochukhov, Savita Mathur, Timo Reinhold, Victor See, Sallie Baliunas, Willie Soon

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle age, while stellar activity continues to decline. We aim to characterize this midlife transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this midlife transition in solar-type stars.

OriginalsprogEngelsk
Artikelnummer122
TidsskriftAstrophysical Journal
Vol/bind921
Nummer2
Antal sider10
ISSN0004-637X
DOI
StatusUdgivet - nov. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS'. Sammen danner de et unikt fingeraftryk.

Citationsformater