Long-distance electron transport occurs globally in marine sediments

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

DOI

  • Laurine D.W. Burdorf, Utrecht University, Utrecht
  • ,
  • Anton Tramper, Utrecht University, Utrecht
  • ,
  • Dorina Seitaj, Utrecht University, Utrecht, Vrije Universiteit Brussel
  • ,
  • Lorenz Meire
  • Silvia Hidalgo-Martinez, Utrecht University, Utrecht
  • ,
  • Eva Maria Zetsche, Utrecht University, Utrecht, Göteborgs Universitet
  • ,
  • Henricus T.S. Boschker, Utrecht University, Utrecht
  • ,
  • Filip J.R. Meysman

Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-The-Art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.

OriginalsprogEngelsk
TidsskriftBiogeosciences
Vol/bind14
Sider (fra-til)683-701
Antal sider19
ISSN1726-4170
DOI
StatusUdgivet - 10 feb. 2017

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 117941991