Long-distance electron transfer in a filamentous Gram-positive bacterium

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Yonggang Yang, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
  • ,
  • Zegao Wang, Sichuan University
  • ,
  • Cuifen Gan, Guangdong Academy of Sciences
  • ,
  • Lasse Hyldgaard Klausen
  • Robin Bonné, Univ Hasselt, Hasselt University
  • ,
  • Guannan Kong, Guangdong Academy of Sciences
  • ,
  • Dizhou Luo, Guangdong Academy of Sciences
  • ,
  • Mathijs Meert, Univ Hasselt, Hasselt University
  • ,
  • Chunjie Zhu, Guangdong Academy of Sciences
  • ,
  • Guoping Sun, Guangdong Academy of Sciences
  • ,
  • Jun Guo, State Key Laboratory of Applied Microbiology Southern China
  • ,
  • Yuxin Ma, Guangdong Pharmaceutical University
  • ,
  • Jesper Tataru Bjerg
  • Jean Manca, Univ Hasselt, Hasselt University
  • ,
  • Meiying Xu, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
  • ,
  • Lars Peter Nielsen
  • Mingdong Dong

Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.

OriginalsprogEngelsk
Artikelnummer1709
TidsskriftNature Communications
Vol/bind12
Nummer1
Antal sider9
ISSN2041-1723
DOI
StatusUdgivet - mar. 2021

Se relationer på Aarhus Universitet Citationsformater

ID: 213716850