Local models for conical Kähler-Einstein metrics

Cristiano Spotti, Martin de Borbon

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

In this note we construct, in the context of metrics with conical singularities along a divisor, regular Calabi-Yau cones and Kähler-Einstein metrics of negative Ricci with a cuspidal point. As an application, we describe singularities and cuspidal ends of the completions of the complex hyperbolic metrics on the moduli spaces of ordered configurations of points in the projective line introduced by Deligne-Mostow and Thurston.

OriginalsprogEngelsk
TidsskriftProceedings of the American Mathematical Society
Vol/bind147
Nummer3
Sider (fra-til)1217-1230
Antal sider14
ISSN0002-9939
DOI
StatusUdgivet - 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Local models for conical Kähler-Einstein metrics'. Sammen danner de et unikt fingeraftryk.

Citationsformater