Likelihood-Based Inference in Nonlinear Error-Correction Models

Dennis Kristensen, Anders Rahbæk

    Publikation: Working paper/Preprint Working paperForskning

    Abstract

    We consider a class of vector nonlinear error correction models
    where the transfer function (or loadings) of the stationary relation-
    ships is nonlinear. This includes in particular the smooth transition
    models.
    A general representation theorem is given which establishes the
    dynamic properties of the process in terms of stochastic and deter-
    ministic trends as well as stationary components. In particular, the
    behaviour of the cointegrating relations is described in terms of geo-
    metric ergodicity. Despite the fact that no deterministic terms are
    included, the process will have both stochastic trends and a linear
    trend in general.
    Gaussian likelihood-based estimators are considered for the long-
    run cointegration parameters, and the short-run parameters. Asymp-
    totic theory is provided for these and it is discussed to what extend
    asymptotic normality and mixed normaity can be found. A simulation
    study reveals that cointegration vectors and the shape of the adjust-
    ment are quite accurately estimated by maximum likelihood, while
    at the same time there is very little information about some of the
    individual parameters entering the adjustment function.
    OriginalsprogEngelsk
    UdgivelsesstedAarhus
    UdgiverInstitut for Økonomi, Aarhus Universitet
    Antal sider44
    StatusUdgivet - 2007

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Likelihood-Based Inference in Nonlinear Error-Correction Models'. Sammen danner de et unikt fingeraftryk.

    Citationsformater