Learning to be overprecise

Christoph Merkle*, Philipp Schreiber

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We replicate and extend two studies on the dynamics of overconfidence among financial professionals. Using 20 years of data from the ZEW Financial Market Survey with over 40,000 individual forecasts of confidence intervals, we document that participants are overprecise during the entire time period with no evidence of learning on the aggregate. We confirm that professionals update in a Bayesian manner after hits and misses by contracting or expanding their confidence intervals, respectively. However, this updating is insufficient to reach proper calibration. We cannot confirm other predictions of a Bayesian model. An explanation based on self-attribution bias fits the data better.

OriginalsprogEngelsk
TidsskriftJournal of Business Economics
ISSN0044-2372
DOI
StatusAccepteret/In press - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Learning to be overprecise'. Sammen danner de et unikt fingeraftryk.

Citationsformater