Learning Ideological Embeddings from Information Cascades

Corrado Monti, Giuseppe Manco, Cigdem Aslay, Francesco Bonchi

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Modeling information cascades in a social network through the lenses of the ideological leaning of its users can help understanding phenomena such as misinformation propagation and confirmation bias, and devising techniques for mitigating their toxic effects. In this paper we propose a stochastic model to learn the ideological leaning of each user in a multidimensional ideological space, by analyzing the way politically salient content propagates. In particular, our model assumes that information propagates from one user to another if both users are interested in the topic and ideologically aligned with each other. To infer the parameters of our model, we devise a gradient-based optimization procedure maximizing the likelihood of an observed set of information cascades. Our experiments on real-world political discussions on Twitter and Reddit confirm that our model is able to learn the political stance of the social media users in a multidimensional ideological space.

OriginalsprogEngelsk
TitelProceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM '21)
Antal sider10
UdgivelsesstedNew York
ForlagAssociation for Computing Machinery
Publikationsdatookt. 2021
Sider1325-1334
ISBN (Elektronisk)9781450384469
DOI
StatusUdgivet - okt. 2021
Begivenhed30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, Australien
Varighed: 1 nov. 20215 nov. 2021

Konference

Konference30th ACM International Conference on Information and Knowledge Management, CIKM 2021
Land/OmrådeAustralien
ByVirtual, Online
Periode01/11/202105/11/2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Learning Ideological Embeddings from Information Cascades'. Sammen danner de et unikt fingeraftryk.

Citationsformater