Learning Control of Tandem-Wing Tilt-Rotor UAV with Unsteady Aerodynamic Model

Yunus Govdeli, Sheikh Moheed Bin Muzaffar, Raunak Raj, Basman Elhadidi, Erdal Kayacan

    Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

    3 Citationer (Scopus)

    Abstract

    This paper presents a novel transition flight mathematical model of tilt-rotor unmanned aerial vehicles and demonstrates an application of a novel learning controller on the developed model. Instead of conventional steady aerodynamic models, an unsteady aerodynamic model capable of representing rapid changes in the air flow is developed for the tilt-rotor transition flight. The vehicle is controlled by a neuro-fuzzy learning controller, consisting of a type-2 fuzzy neural network and a proportional-derivative controller. Its results are compared with the results of proportional-integral-derivative controllers. It is evident from the results that the learning controller is capable of capturing the rapid changes in the aerodynamics and outperforms its nonlearning counterpart under perturbed conditions.

    OriginalsprogEngelsk
    Titel2019 IEEE International Conference on Fuzzy Systems, FUZZ 2019
    ForlagIEEE
    Publikationsdato2019
    Artikelnummer8859023
    ISBN (Elektronisk)9781538617281
    DOI
    StatusUdgivet - 2019
    Begivenhed2019 IEEE International Conference on Fuzzy Systems, FUZZ 2019 - New Orleans, USA
    Varighed: 23 jun. 201926 jun. 2019

    Konference

    Konference2019 IEEE International Conference on Fuzzy Systems, FUZZ 2019
    Land/OmrådeUSA
    ByNew Orleans
    Periode23/06/201926/06/2019

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Learning Control of Tandem-Wing Tilt-Rotor UAV with Unsteady Aerodynamic Model'. Sammen danner de et unikt fingeraftryk.

    Citationsformater