Lattices of t-structures and thick subcategories for discrete cluster categories

Sira Gratz, Alexandra Zvonareva*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

36 Downloads (Pure)

Abstract

We classify t-structures and thick subcategories in discrete cluster categories $\mathcal{C}(\mathcal{Z})$ of Dynkin type $A$, and show that the set of all t-structures on $\mathcal{C}(\mathcal{Z})$ is a lattice under inclusion of aisles, with meet given by their intersection. We show that both the lattice of t-structures on $\mathcal{C}(\mathcal{Z})$ obtained in this way and the lattice of thick subcategories of $\mathcal{C}(\mathcal{Z})$ are intimately related to the lattice of non-crossing partitions of type $A$. In particular, the lattice of equivalence classes of non-degenerate t-structures on such a category is isomorphic to the lattice of non-crossing partitions of a finite linearly ordered set.
OriginalsprogEngelsk
TidsskriftJournal of the London Mathematical Society,
Vol/bind107
Nummer3
Sider (fra-til)973-1001
Antal sider29
DOI
StatusUdgivet - mar. 2023

Emneord

  • math.RT
  • math.CT
  • 18E40, 06A12

Fingeraftryk

Dyk ned i forskningsemnerne om 'Lattices of t-structures and thick subcategories for discrete cluster categories'. Sammen danner de et unikt fingeraftryk.

Citationsformater