Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version
In many ferroelectrics, large electromechanical strains are observed near regions of composition- or temperature- driven phase coexistence. Phenomenologically, this is attributed to easy re-orientation of the polarization vector and/or phase transition, although their effects are highly convoluted and difficult to distinguish experimentally. Here, we used synchrotron X-ray scattering and digital image correlation to differentiate between the microscopic mechanisms leading to large electrostrains in an exemplary Pb-free piezoceramic Sn-doped barium calcium zirconate titanate. Large electrostrains of ~0.2% measured at room-temperature are attributed to an unconventional effect, wherein polarization switching is aided by a reversible phase transition near the tetragonal-orthorhombic phase boundary. Additionally, electrostrains of ~0.1% or more could be maintained from room temperature to 140 °C due to a succession of different microscopic mechanisms. In situ X-ray diffraction elucidates that while 90° domain reorientation is pertinent below the Curie temperature (TC), isotropic distortion of polar clusters is the dominant mechanism above TC.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 193 |
Tidsskrift | Communications Physics |
Vol/bind | 3 |
Antal sider | 14 |
ISSN | 0010-3616 |
DOI | |
Status | Udgivet - okt. 2020 |
Se relationer på Aarhus Universitet Citationsformater
ID: 200435859