Aarhus Universitets segl

Land use as a driver for protist community structure in soils under agricultural use across Europe

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Susana Santos
  • ,
  • Anne Schöler, Helmholtz Zentrum München, Tyskland
  • Tue Kjærgaard Nielsen
  • ,
  • Lars Hestbjerg Hansen
  • ,
  • Michael Schloter, Helmholtz Zentrum München
  • ,
  • Anne Winding

Soil biodiversity is threatened by intensification of land use. The consequences of different land use on belowground biodiversity remain insufficiently explored for soil protists. Alongside being abundant and extremely diverse in soil, protists provide many ecosystem services: key players in the microbial loop, turnover of organic matter and stimulation of plant growth-promoting rhizobacteria. However, we lack knowledge of effects of site, land use intensity and management on diversity of soil protists. Here we assessed protist communities in four European arable sites with contrasting land use intensities at each site: Lusignan, France; Moskanjci, Slovenia; Castro Verde, Portugal and Scheyern, Germany as well as two grassland sites: Hainich, Germany and Lancaster, UK. Each site has consistent agricultural management history of low and high land use intensities quantified in terms of land use index (LUI). We employed high-throughput sequencing of environmental DNA, targeting the V4 region of the 18S rRNA gene. By assigning the protist composition to trophic groups, we inspected for effects of management, and other biotic and abiotic variables. While overall protist richness was unaffected by LUI within sites, specific trophic groups such as plant pathogens and saprotrophs were affected. Effects on protist biome across land uses and sites were also observed. LUI sensitive taxa were taxonomically diverse in each plot, and their trophic groups responded in specific patterns to specific practices. The most abundant trophic group was phagotrophs (73%), followed by photoautotrophs (16%), plant pathogens (4%), animal parasites (2%) and saprotrophs (1%). Community compositions and factors affecting the structure of individual trophic groups differed between land uses and management systems. The agricultural management selected for distinct protist populations as well as specific functional traits, and the protist community and diversity were indeed affected by site, LUI and management, which indicates the ecological significance of protists in the soil food web.

TidsskriftScience of the Total Environment
Antal sider11
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 179649172