Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Krull-Remak-Schmidt decompositions in Hom-finite additive categories
AU - Shah, Amit
PY - 2023/3
Y1 - 2023/3
N2 - An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is, a finite direct sum decomposition consisting of objects with local endomorphism rings—is known as a Krull-Schmidt category. A Hom-finite category is an additive category A for which there is a commutative unital ring k, such that each Hom-set in A is a finite length k-module. The aim of this note is to provide a proof that a Hom-finite category is Krull-Schmidt, if and only if it has split idempotents, if and only if each indecomposable object has a local endomorphism ring.
AB - An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is, a finite direct sum decomposition consisting of objects with local endomorphism rings—is known as a Krull-Schmidt category. A Hom-finite category is an additive category A for which there is a commutative unital ring k, such that each Hom-set in A is a finite length k-module. The aim of this note is to provide a proof that a Hom-finite category is Krull-Schmidt, if and only if it has split idempotents, if and only if each indecomposable object has a local endomorphism ring.
KW - Additive category
KW - Hom-finite category
KW - Idempotent
KW - Krull-Remak-Schmidt decomposition
KW - Krull-Schmidt category
KW - Split idempotents
U2 - 10.1016/j.exmath.2022.12.003
DO - 10.1016/j.exmath.2022.12.003
M3 - Journal article
VL - 41
SP - 220
EP - 237
JO - Expositiones Mathematicae
JF - Expositiones Mathematicae
SN - 0723-0869
IS - 1
ER -