Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version
An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is, a finite direct sum decomposition consisting of objects with local endomorphism rings—is known as a Krull-Schmidt category. A Hom-finite category is an additive category A for which there is a commutative unital ring k, such that each Hom-set in A is a finite length k-module. The aim of this note is to provide a proof that a Hom-finite category is Krull-Schmidt, if and only if it has split idempotents, if and only if each indecomposable object has a local endomorphism ring.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Expositiones Mathematicae |
Vol/bind | 41 |
Nummer | 1 |
Sider (fra-til) | 220-237 |
Antal sider | 18 |
ISSN | 0723-0869 |
DOI | |
Status | Udgivet - mar. 2023 |
Se relationer på Aarhus Universitet Citationsformater
ID: 295625340