Aarhus Universitets segl

Krull-Remak-Schmidt decompositions in Hom-finite additive categories

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is, a finite direct sum decomposition consisting of objects with local endomorphism rings—is known as a Krull-Schmidt category. A Hom-finite category is an additive category A for which there is a commutative unital ring k, such that each Hom-set in A is a finite length k-module. The aim of this note is to provide a proof that a Hom-finite category is Krull-Schmidt, if and only if it has split idempotents, if and only if each indecomposable object has a local endomorphism ring.

OriginalsprogEngelsk
TidsskriftExpositiones Mathematicae
Vol/bind41
Nummer1
Sider (fra-til)220-237
Antal sider18
ISSN0723-0869
DOI
StatusUdgivet - mar. 2023

Se relationer på Aarhus Universitet Citationsformater

ID: 295625340