Jump-robust volatility estimation using nearest neighbor truncation

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small ("zero") returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.
OriginalsprogEngelsk
TidsskriftJournal of Econometrics
Vol/bind169
Nummer1
Sider (fra-til)75-93
Antal sider19
ISSN0304-4076
DOI
StatusUdgivet - 1 jul. 2012

Se relationer på Aarhus Universitet Citationsformater

ID: 69757482