TY - JOUR
T1 - Isolation of Quiescent Stem Cell Populations from Individual Skeletal Muscles
AU - Frimand, Zofija
AU - Das Barman, Shubhangi
AU - Kjær, Troels Rønn
AU - Porpiglia, Ermelinda
AU - de Morree, Antoine
PY - 2022/12
Y1 - 2022/12
N2 - Skeletal muscle harbors distinct populations of adult stem cells that contribute to the homeostasis and repair of the tissue. Skeletal muscle stem cells (MuSCs) have the ability to make new muscle, whereas fibro-adipogenic progenitors (FAPs) contribute to stromal supporting tissues and have the ability to make fibroblasts and adipocytes. Both MuSCs and FAPs reside in a state of prolonged reversible cell cycle exit, called quiescence. The quiescent state is key to their function. Quiescent stem cells are commonly purified from multiple muscle tissues pooled together in a single sample. However, recent studies have revealed distinct differences in the molecular profiles and quiescence depth of MuSCs isolated from different muscles. The present protocol describes the isolation and study of MuSCs and FAPs from individual skeletal muscles and presents strategies to perform molecular analysis of stem cell activation. It details how to isolate and digest muscles of different developmental origin, thicknesses, and functions, such as the diaphragm, triceps, gracilis, tibialis anterior (TA), gastrocnemius (GA), soleus, extensor digitorum longus (EDL), and the masseter muscles. MuSCs and FAPs are purified by fluorescence-activated cell sorting (FACS) and analyzed by immunofluorescence staining and 5-ethynyl-2´-deoxyuridine (EdU) incorporation assay.
AB - Skeletal muscle harbors distinct populations of adult stem cells that contribute to the homeostasis and repair of the tissue. Skeletal muscle stem cells (MuSCs) have the ability to make new muscle, whereas fibro-adipogenic progenitors (FAPs) contribute to stromal supporting tissues and have the ability to make fibroblasts and adipocytes. Both MuSCs and FAPs reside in a state of prolonged reversible cell cycle exit, called quiescence. The quiescent state is key to their function. Quiescent stem cells are commonly purified from multiple muscle tissues pooled together in a single sample. However, recent studies have revealed distinct differences in the molecular profiles and quiescence depth of MuSCs isolated from different muscles. The present protocol describes the isolation and study of MuSCs and FAPs from individual skeletal muscles and presents strategies to perform molecular analysis of stem cell activation. It details how to isolate and digest muscles of different developmental origin, thicknesses, and functions, such as the diaphragm, triceps, gracilis, tibialis anterior (TA), gastrocnemius (GA), soleus, extensor digitorum longus (EDL), and the masseter muscles. MuSCs and FAPs are purified by fluorescence-activated cell sorting (FACS) and analyzed by immunofluorescence staining and 5-ethynyl-2´-deoxyuridine (EdU) incorporation assay.
UR - http://www.scopus.com/inward/record.url?scp=85144282159&partnerID=8YFLogxK
U2 - 10.3791/64557
DO - 10.3791/64557
M3 - Journal article
C2 - 36571398
SN - 1940-087X
VL - 190
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
M1 - e64557
ER -