Interval Type-2 Fuzzy-Neuro Control of Nonlinear Systems With Proved Overall System Stability

Chao Zhang, Claudio Rossi, Erdal Kayacan

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

2 Citationer (Scopus)

Abstract

In this paper, we put forward an interval type-2 fuzzy neural network (IT2FNN) to deal with control issues of nonlinear systems with uncertainties. The fuzzy rules of the IT2FNN use interval type-2 triangular fuzzy sets to account for antecedent parts and adopt crisp numbers for the corresponding consequents. To effectively cope with uncertainties in the systems, a sliding-mode-control theory-based approach with new parameter learning rules is proposed to update the IT2FNN. The overall stability of the proposed methodology is also proved by using appropriate Lyapunov functions. Finally, the proposed method is applied to control the angular position of an inverted pendulum system. Simulation results indicate that, compared to a conventional proportional-derivative controller, the IT2FNN with the proposed learning rules can eliminate the uncertainties in performance and efficiently track the angle trajectory as desired.

OriginalsprogEngelsk
Titel2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017
Antal sider6
ForlagIEEE
Publikationsdato23 aug. 2017
Sider1-6
Artikelnummer8015495
ISBN (Trykt)978-1-5090-6034-4
ISBN (Elektronisk)9781509060344
DOI
StatusUdgivet - 23 aug. 2017
Udgivet eksterntJa
BegivenhedIEEE International Conference on Fuzzy Systems 2017 - Royal-Continental Hotel Via Partenope, Italien
Varighed: 9 jul. 201712 jul. 2017

Konference

KonferenceIEEE International Conference on Fuzzy Systems 2017
LokationRoyal-Continental Hotel Via Partenope
Land/OmrådeItalien
Periode09/07/201712/07/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Interval Type-2 Fuzzy-Neuro Control of Nonlinear Systems With Proved Overall System Stability'. Sammen danner de et unikt fingeraftryk.

Citationsformater