Integral Picard group of the stack of quasi-polarized K3 surfaces of low degree

Publikation: Working paperForskning

Dokumenter

  • 1910

    Forlagets udgivne version, 335 KB, PDF-dokument

Links

  • Andrea Di Lorenzo
We compute the integral Picard group of the stack $\mathcal{K}_{2l}$ of quasi-polarized K3 surfaces of degree $2l=4,6,8$. We show that in this range the integral Picard group is torsion-free and that a basis is given by certain elliptic Noether-Lefschetz divisors together with the Hodge line bundle. To achieve this result, we investigate certain stacks of complete intersections and their Picard groups by means of equivariant geometry. In the end we compute an expression of the class of some Noether-Lefschetz divisors, restricted to an open substack of $\mathcal{K}_{2l}$, in terms of the basis mentioned above.
OriginalsprogEngelsk
UdgiverArXiv
StatusUdgivet - 19 okt. 2019

    Forskningsområder

  • math.AG, 14J28, 14D23, 14C22, 14C15

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 176967005