Infinite friezes and triangulations of annuli

Karin Baur, Ilke Çanakçl, Karin M. Jacobsen, Maitreyee C. Kulkarni*, Gordana Todorov

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

It is known that any infinite periodic frieze comes from a triangulation of an annulus by Theorem 4.6 of [K. Baur, M. J. Parsons and M. Tschabold, Infinite friezes, European J. Combin. 54 (2016) 220-237]. In this paper, we show that each infinite periodic frieze determines a triangulation of an annulus in essentially a unique way. Since each triangulation of an annulus determines a pair of friezes, we study such pairs and show how they determine each other. We study associated module categories and determine the growth coefficient of the pair of friezes in terms of modules as well as their quiddity sequences.

OriginalsprogEngelsk
Artikelnummer2450207
TidsskriftJournal of Algebra and its Applications
Vol/bind23
Nummer12
ISSN0219-4988
DOI
StatusUdgivet - okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Infinite friezes and triangulations of annuli'. Sammen danner de et unikt fingeraftryk.

Citationsformater