Including different groups of genotyped females for genomic prediction in a Nordic Jersey population

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Including genotyped females in a reference population (RP) is an obvious way to increase the RP in genomic selection, especially for dairy breeds of limited population size. However, the incorporation of these females must be conducted cautiously because of the potential preferential treatment of the genotyped cows and lower reliabilities of phenotypes compared with the proven pseudo-phenotypes of bulls. Breeding organizations in Denmark, Finland, and Sweden have implemented a female-genotyping project with the possibility of genotyping entire herds using the low-density (LD) chip. In the present study, 5 scenarios for building an RP were investigated in the Nordic Jersey population: (1) bulls only, (2) bulls with females from the LD project, (3) bulls with females from the LD project plus non-LD project females genotyped before their first calving, (4) bulls with females from the LD project plus non-LD project females genotyped after their first calving, and (5) bulls with all genotyped females. The genomically enhanced breeding value (GEBV) was predicted for 8 traits in the Nordic total merit index through a genomic BLUP model using deregressed proof (DRP) as the response variable in all scenarios. In addition, (daughter) yield deviation and raw phenotypic data were studied as response variables for comparison with the DRP, using stature as a model trait. The validation population was formed using a cut-off birth year of 2005 based on the genotyped Nordic Jersey bulls with DRP. The average increment in reliability of the GEBV across the 8 traits investigated was 1.9 to 4.5 percentage points compared with using only bulls in the RP (scenario 1). The addition of all the genotyped females to the RP resulted in the highest gain in reliability (scenario 5), followed by scenario 3, scenario 2, and scenario 4. All scenarios led to inflated GEBV because the regression coefficients are less than 1. However, scenario 2 and scenario 3 led to less bias of genomic predictions than scenario 5, with regression coefficients showing less deviation from scenario 1. For the study on stature, the daughter yield deviation/daughter yield deviation performed slightly better than the DRP as the response variable in the genomic BLUP (GBLUP) model. Therefore, adding unselected females in the RP could significantly improve the reliabilities and tended to reduce the prediction bias compared with adding selectively genotyped females. Although the DRP has performed robustly so far, the use of raw data is recommended with a single-step model as an optimal solution for future genomic evaluations.

TidsskriftJournal of Dairy Science
StatusUdgivet - 2015

Se relationer på Aarhus Universitet Citationsformater

ID: 97984248