Institut for Forretningsudvikling og Teknologi

Improved Gaussian Mixture Models for Adaptive Foreground Segmentation

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


  • Nikolaos Katsarakis, Danmark
  • Aristodemos Pnevmatikakis, Grækenland
  • Zheng-Hua Tan, Danmark
  • Ramjee Prasad
Adaptive foreground segmentation is traditionally performed using Stauffer & Grimson’s algorithm that models every pixel of the frame by a mixture of Gaussian distributions with continuously adapted parameters. In this paper we provide an enhancement of the algorithm by adding two important dynamic elements to the baseline algorithm: The learning rate can change across space and time, while the Gaussian distributions can be merged together if they become similar due to their adaptation process. We quantify the importance of our enhancements and the effect of parameter tuning using an annotated outdoors sequence.
TidsskriftWireless Personal Communications
Sider (fra-til)629-643
Antal sider14
StatusUdgivet - apr. 2016
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 171384521