Implications of rectal preconditioning for interpretation of sensory-motor data

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Implications of rectal preconditioning for interpretation of sensory-motor data. / Zhao, Jingbo; Gregersen, Tine; Fassov, Janne; Krogh, Klaus; Gregersen, Hans.

I: Journal of Biomechanics, Bind 99, 109541, 23.01.2020.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{65839252de5b434a9f3bdef26809fde9,
title = "Implications of rectal preconditioning for interpretation of sensory-motor data",
abstract = "Testing of biomechanical properties of intestine requires the tissue to be preconditioned by applying cyclic loading to obtain repeatable mechanical data. However, little is known about the mechanosensory properties during intestinal preconditioning. We aimed to study the relationship between mechanical preconditioning of the human rectum and sensory response. Three fast rectal bag distensions to the pain threshold were done in seven healthy females. A visual analog scale (VAS) was used for sensory assessment. At each distension, we determined (1) time, bag cross-sectional area (CSA), radius (r), r/r0, pressure and tension to reach VAS = 1, 3 and 5 (pain threshold); (2) the same parameters at induced contraction start; (3) CSA where the pressure started to increase (CSAP>baseline) and (4) the number of contractions. The time, CSA, r/r0 and tension to reach VAS = 1 and VAS = 3 increased from distension 1 to 3 (4.9 < F < 11.5, 0.05 > P > 0.007), primarily due to difference between the first and second distension. For VAS = 5, r/r0 was smaller in distension 3 than distension 1 (P < 0.05), whereas time, CSA and tension did not differ between distensions (P > 0.5). Compared with distension 1, CSA, r/r0 and tension at contraction start, and CSAP>baseline were bigger in distensions 2 and 3 (5.5 < F < 10.9, 0.05 > P > 0.009). The pressure to reach the VAS levels, the contraction numbers and pressure at contraction start did not differ among distensions (P > 0.6). During mechanical preconditioning, CSA, tension and deformation increased at sub-pain levels, reflecting sensory adaptation. The data point to acute remodeling of a strain-dependent mechanism in the rectal wall.",
author = "Jingbo Zhao and Tine Gregersen and Janne Fassov and Klaus Krogh and Hans Gregersen",
note = "Copyright {\textcopyright} 2019 Elsevier Ltd. All rights reserved.",
year = "2020",
month = jan,
day = "23",
doi = "10.1016/j.jbiomech.2019.109541",
language = "English",
volume = "99",
journal = "Journal of Biomechanics",
issn = "0021-9290",
publisher = "Pergamon Press",

}

RIS

TY - JOUR

T1 - Implications of rectal preconditioning for interpretation of sensory-motor data

AU - Zhao, Jingbo

AU - Gregersen, Tine

AU - Fassov, Janne

AU - Krogh, Klaus

AU - Gregersen, Hans

N1 - Copyright © 2019 Elsevier Ltd. All rights reserved.

PY - 2020/1/23

Y1 - 2020/1/23

N2 - Testing of biomechanical properties of intestine requires the tissue to be preconditioned by applying cyclic loading to obtain repeatable mechanical data. However, little is known about the mechanosensory properties during intestinal preconditioning. We aimed to study the relationship between mechanical preconditioning of the human rectum and sensory response. Three fast rectal bag distensions to the pain threshold were done in seven healthy females. A visual analog scale (VAS) was used for sensory assessment. At each distension, we determined (1) time, bag cross-sectional area (CSA), radius (r), r/r0, pressure and tension to reach VAS = 1, 3 and 5 (pain threshold); (2) the same parameters at induced contraction start; (3) CSA where the pressure started to increase (CSAP>baseline) and (4) the number of contractions. The time, CSA, r/r0 and tension to reach VAS = 1 and VAS = 3 increased from distension 1 to 3 (4.9 < F < 11.5, 0.05 > P > 0.007), primarily due to difference between the first and second distension. For VAS = 5, r/r0 was smaller in distension 3 than distension 1 (P < 0.05), whereas time, CSA and tension did not differ between distensions (P > 0.5). Compared with distension 1, CSA, r/r0 and tension at contraction start, and CSAP>baseline were bigger in distensions 2 and 3 (5.5 < F < 10.9, 0.05 > P > 0.009). The pressure to reach the VAS levels, the contraction numbers and pressure at contraction start did not differ among distensions (P > 0.6). During mechanical preconditioning, CSA, tension and deformation increased at sub-pain levels, reflecting sensory adaptation. The data point to acute remodeling of a strain-dependent mechanism in the rectal wall.

AB - Testing of biomechanical properties of intestine requires the tissue to be preconditioned by applying cyclic loading to obtain repeatable mechanical data. However, little is known about the mechanosensory properties during intestinal preconditioning. We aimed to study the relationship between mechanical preconditioning of the human rectum and sensory response. Three fast rectal bag distensions to the pain threshold were done in seven healthy females. A visual analog scale (VAS) was used for sensory assessment. At each distension, we determined (1) time, bag cross-sectional area (CSA), radius (r), r/r0, pressure and tension to reach VAS = 1, 3 and 5 (pain threshold); (2) the same parameters at induced contraction start; (3) CSA where the pressure started to increase (CSAP>baseline) and (4) the number of contractions. The time, CSA, r/r0 and tension to reach VAS = 1 and VAS = 3 increased from distension 1 to 3 (4.9 < F < 11.5, 0.05 > P > 0.007), primarily due to difference between the first and second distension. For VAS = 5, r/r0 was smaller in distension 3 than distension 1 (P < 0.05), whereas time, CSA and tension did not differ between distensions (P > 0.5). Compared with distension 1, CSA, r/r0 and tension at contraction start, and CSAP>baseline were bigger in distensions 2 and 3 (5.5 < F < 10.9, 0.05 > P > 0.009). The pressure to reach the VAS levels, the contraction numbers and pressure at contraction start did not differ among distensions (P > 0.6). During mechanical preconditioning, CSA, tension and deformation increased at sub-pain levels, reflecting sensory adaptation. The data point to acute remodeling of a strain-dependent mechanism in the rectal wall.

U2 - 10.1016/j.jbiomech.2019.109541

DO - 10.1016/j.jbiomech.2019.109541

M3 - Journal article

C2 - 31787257

VL - 99

JO - Journal of Biomechanics

JF - Journal of Biomechanics

SN - 0021-9290

M1 - 109541

ER -