Aarhus University Seal / Aarhus Universitets segl

Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Judit Tomsen-Melero, Institut the Ciencia de Materials de Barcelona, Nanomol Technologies SL, 08193 Bellaterra, Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Solène Passemard, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Natalia García-Aranda, Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Zamira Vanessa Días-Riascos, Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Ramon González-Rioja, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Jannik Nedergaard Pedersen
  • Jeppe Lyngsø
  • ,
  • Josep Merlo-Mas, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spanien
  • Edgar Cristóbal-Lecina, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • José Luis Corchero, Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Daniel Pulido, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Patricia Cámara-Sánchez, Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Irina Portnaya, Technion-Israel Institute of Technology, Israel
  • Inbal Ionita, Technion-Israel Institute of Technology, Israel
  • Simó Schwarz, Jr., Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Jaume Veciana, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Santi Sala, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spanien
  • Miriam Royo, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Alba Córdoba, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spanien
  • Dganit Danino, Guangdong Technion Israel Institute of Technology, Technion-Israel Institute of Technology, Kina
  • Jan Skov Pedersen
  • Elisabet González-Mira, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Ibane Abasolo, Universitat Autònoma de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
  • Nora Ventosa, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spanien
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems—quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
OriginalsprogEngelsk
TidsskriftACS applied materials & interfaces
Vol/bind13
Nummer7
Sider (fra-til)7825-7838
Antal sider14
ISSN1944-8244
DOI
StatusUdgivet - feb. 2021

Se relationer på Aarhus Universitet Citationsformater

ID: 212259638