Ice-nucleating bacteria control the order and dynamics of interfacial water

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Ravindra Pandey, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Kota Usui, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Ruth A Livingstone, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Sean A Fischer, Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
  • ,
  • Jim Pfaendtner, Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
  • ,
  • Ellen H G Backus, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Yuki Nagata, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Janine Fröhlich-Nowoisky, Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
  • ,
  • Lars Schmüser, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Sergio Mauri, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Jan F Scheel, Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
  • ,
  • Daniel A Knopf, Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
  • ,
  • Ulrich Pöschl, Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
  • ,
  • Mischa Bonn, Max Planck Institute for Polymer Research, Ackermannweg 10, 55218 Mainz, Germany.
  • ,
  • Tobias Weidner

Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

OriginalsprogEngelsk
TidsskriftScience Advances
Vol/bind2
Nummer4
Sider (fra-til)e1501630, 1-8
Antal sider8
ISSN2375-2548
DOI
StatusUdgivet - 2016
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 115120462