Hypertoric Manifolds and HyperKähler Moment Maps

Andrew Francis Swann, Andrew Dancer

Publikation: Bidrag til bog/antologi/rapport/proceedingBidrag til bog/antologiForskningpeer review

5 Citationer (Scopus)

Abstract

We discuss various aspects of moment map geometry in symplectic and hyperKähler geometry. In particular, we classify complete hyperKähler manifolds of dimension 4 n with a tri-Hamiltonian action of a torus of dimension n, without any assumption on the finiteness of the Betti numbers. As a result we find that the hyperKähler moment in these cases has connected fibres, a property that is true for symplectic moment maps, and is surjective. New examples of hypertoric manifolds of infinite topological type are produced. We provide examples of non-Abelian tri-Hamiltonian group actions of connected groups on complete hyperKähler manifolds such that the hyperKähler moment map is not surjective and has some fibres that are not connected. We also discuss relationships to symplectic cuts, hyperKähler modifications and implosion constructions.

OriginalsprogEngelsk
TitelSpecial Metrics and Group Actions in Geometry
RedaktørerS. Chiossi, A. Fino, E. Musso, F. Podestà, L. Vezzoni
Antal sider21
ForlagSpringer
Publikationsdatonov. 2017
Sider107-127
ISBN (Trykt)978-3-319-67518-3
DOI
StatusUdgivet - nov. 2017
NavnSpringer INdAM Series
Vol/bind23

Fingeraftryk

Dyk ned i forskningsemnerne om 'Hypertoric Manifolds and HyperKähler Moment Maps'. Sammen danner de et unikt fingeraftryk.

Citationsformater