Projekter pr. år
Abstract
We discuss various aspects of moment map geometry in symplectic and hyperKähler geometry. In particular, we classify complete hyperKähler manifolds of dimension 4 n with a tri-Hamiltonian action of a torus of dimension n, without any assumption on the finiteness of the Betti numbers. As a result we find that the hyperKähler moment in these cases has connected fibres, a property that is true for symplectic moment maps, and is surjective. New examples of hypertoric manifolds of infinite topological type are produced. We provide examples of non-Abelian tri-Hamiltonian group actions of connected groups on complete hyperKähler manifolds such that the hyperKähler moment map is not surjective and has some fibres that are not connected. We also discuss relationships to symplectic cuts, hyperKähler modifications and implosion constructions.
Originalsprog | Engelsk |
---|---|
Titel | Special Metrics and Group Actions in Geometry |
Redaktører | S. Chiossi, A. Fino, E. Musso, F. Podestà, L. Vezzoni |
Antal sider | 21 |
Forlag | Springer |
Publikationsdato | nov. 2017 |
Sider | 107-127 |
ISBN (Trykt) | 978-3-319-67518-3 |
DOI | |
Status | Udgivet - nov. 2017 |
Navn | Springer INdAM Series |
---|---|
Vol/bind | 23 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Hypertoric Manifolds and HyperKähler Moment Maps'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Torus symmetry and Einstein metrics
Swann, A. F. (Deltager)
01/11/2016 → 31/12/2019
Projekter: Projekt › Forskning