HyperKähler Potentials via Finite-Dimensional Quotients

Piotr Kobak*, Andrew Swann

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

It is known that nilpotent orbits in a complex simple Lie algebra admit hyperKähler metrics with a single function that is a global potential for each of the Kähler structures (a hyperKähler potential). In an earlier paper, the authors showed that nilpotent orbits in classical Lie algebras can be constructed as finite- dimensional hyperKähler quotient of a flat vector space. This paper uses that quotient construction to compute hyperKähler potentials explicitly for orbits of elements with small Jordan blocks. It is seen that the Kähler potentials of Biquard and Gauduchon for SL(n, ℂ)-orbits of elements with X2 = 0, are in fact hyperKähler potentials.

OriginalsprogEngelsk
TidsskriftGeometriae Dedicata
Vol/bind88
Nummer1-3
Sider (fra-til)1-19
Antal sider19
ISSN0046-5755
DOI
StatusUdgivet - 1 dec. 2001
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'HyperKähler Potentials via Finite-Dimensional Quotients'. Sammen danner de et unikt fingeraftryk.

Citationsformater