TY - JOUR
T1 - Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover
AU - Poulsen, Jesper Buchhave
AU - Andersen, Kasper Røjkjær
AU - Kjær, Karina Hansen
AU - Durand, Fiona
AU - Faou, Pierre
AU - Vestergaard, Anna Lindeløv
AU - Talbo, Gert Hoy
AU - Hoogenraad, Nick
AU - Brodersen, Ditlev Egeskov
AU - Justesen, Just
AU - Martensen, Pia Møller
N1 - DEB Lab.id: 216771
PY - 2011
Y1 - 2011
N2 - The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′–5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′–5′-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral and cellular RNA breakdown. Subsequently, the 2-5As are removed by a 2′-phosphodiesterase (2′-PDE), an enzyme that apart from breaking 2′–5′ bonds also degrades regular, 3′–5′-linked oligoadenylates. Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2′-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2′-PDE, apart from playing a role in the cellular immune system, may also function in mitochondrial RNA turnover.
AB - The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′–5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′–5′-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral and cellular RNA breakdown. Subsequently, the 2-5As are removed by a 2′-phosphodiesterase (2′-PDE), an enzyme that apart from breaking 2′–5′ bonds also degrades regular, 3′–5′-linked oligoadenylates. Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2′-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2′-PDE, apart from playing a role in the cellular immune system, may also function in mitochondrial RNA turnover.
U2 - 10.1093/nar/gkq1282
DO - 10.1093/nar/gkq1282
M3 - Journal article
C2 - 21245038
SN - 0305-1048
VL - 39
SP - 3754
EP - 3770
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 9
ER -