TY - JOUR
T1 - How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling
AU - Yoshida, Keimei
AU - Axelsen, Julie Birkmosse
AU - Saku, Keita
AU - Andersen, Asger
AU - de Man, Frances S
AU - Sunagawa, Kenji
AU - Noordegraaf, Anton Vonk
AU - Bogaard, Harm Jan
PY - 2023/7
Y1 - 2023/7
N2 - Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e., end-systolic elastance, and pulmonary vascular properties, i.e., effective arterial elastance (Ea). However, PAH-induced RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby, a ratio of RV end-systolic pressure (Pes) to RV stroke volume (SV) could not correctly define Ea. To overcome this limitation, we introduced a two-parallel compliance model, i.e., Ea = 1/(1/Epa 1/ETR), while effective pulmonary arterial elastance (Epa = Pes/PASV) represents pulmonary vascular properties and effective tricuspid regurgitant elastance (ETR) represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased Ea, suggesting that a reduction of TR increased Ea. Using the proposed framework, Epa was indistinguishable to Ea post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.
AB - Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e., end-systolic elastance, and pulmonary vascular properties, i.e., effective arterial elastance (Ea). However, PAH-induced RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby, a ratio of RV end-systolic pressure (Pes) to RV stroke volume (SV) could not correctly define Ea. To overcome this limitation, we introduced a two-parallel compliance model, i.e., Ea = 1/(1/Epa 1/ETR), while effective pulmonary arterial elastance (Epa = Pes/PASV) represents pulmonary vascular properties and effective tricuspid regurgitant elastance (ETR) represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased Ea, suggesting that a reduction of TR increased Ea. Using the proposed framework, Epa was indistinguishable to Ea post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.
KW - Animals
KW - Cardiac Catheterization
KW - Heart Ventricles
KW - Hypertension, Pulmonary
KW - Pulmonary Artery
KW - Rats
KW - Stroke Volume
KW - Tricuspid Valve Insufficiency
KW - Ventricular Dysfunction, Right
KW - Ventricular Function, Right
UR - http://www.scopus.com/inward/record.url?scp=85163920628&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00081.2023
DO - 10.1152/japplphysiol.00081.2023
M3 - Journal article
C2 - 37227183
SN - 8750-7587
VL - 135
SP - 53
EP - 59
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 1
ER -