Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota

Kathrin Wippel, Ke Tao, Yulong Niu, Rafal Zgadzaj, Niklas Kiel, Rui Guan, Eik Dahms, Pengfan Zhang, Dorthe B. Jensen, Elke Logemann, Simona Radutoiu*, Paul Schulze-Lefert*, Ruben Garrido-Oter*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)
20 Downloads (Pure)

Abstract

Roots of different plant species are colonized by bacterial communities, that are distinct even when hosts share the same habitat. It remains unclear to what extent the host actively selects these communities and whether commensals are adapted to a specific plant species. To address this question, we assembled a sequence-indexed bacterial culture collection from roots and nodules of Lotus japonicus that contains representatives of most species previously identified using metagenomics. We analysed taxonomically paired synthetic communities from L. japonicus and Arabidopsis thaliana in a multi-species gnotobiotic system and detected signatures of host preference among commensal bacteria in a community context, but not in mono-associations. Sequential inoculation experiments revealed priority effects during root microbiota assembly, where established communities are resilient to invasion by latecomers, and that host preference of commensal bacteria confers a competitive advantage in their cognate host. Our findings show that host preference in commensal bacteria from diverse taxonomic groups is associated with their invasiveness into standing root-associated communities.

OriginalsprogEngelsk
TidsskriftNature Microbiology
Vol/bind6
Nummer9
Sider (fra-til)1150-1162
Antal sider13
ISSN2058-5276
DOI
StatusUdgivet - sep. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota'. Sammen danner de et unikt fingeraftryk.

Citationsformater