@article{affe7571633e4e2bbfcdf304391e7e6a,
title = "Homomorphisms of Product Semigroups",
abstract = "Let S1, ⋯ , SN and R be semigroups. For homomorphisms F: S1× ⋯ × SN→ R we derive sufficient conditions for existence and uniqueness of homomorphisms Fn: Sn→ R, n= 1 , ⋯ , N, such that F(s1, ⋯ , sN) = F1(s1) ⋯ FN(sN) for all s1∈ S1, ⋯ , sN∈ SN.",
keywords = "decomposition, homomorphism, product semigroup, Semigroup",
author = "Henrik Stetk{\ae}r",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.",
year = "2022",
month = apr,
doi = "10.1007/s00025-022-01603-w",
language = "English",
volume = "77",
journal = "Results in Mathematics",
issn = "1422-6383",
publisher = "Springer Basel AG",
number = "2",
}
TY - JOUR
T1 - Homomorphisms of Product Semigroups
AU - Stetkær, Henrik
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2022/4
Y1 - 2022/4
N2 - Let S1, ⋯ , SN and R be semigroups. For homomorphisms F: S1× ⋯ × SN→ R we derive sufficient conditions for existence and uniqueness of homomorphisms Fn: Sn→ R, n= 1 , ⋯ , N, such that F(s1, ⋯ , sN) = F1(s1) ⋯ FN(sN) for all s1∈ S1, ⋯ , sN∈ SN.
AB - Let S1, ⋯ , SN and R be semigroups. For homomorphisms F: S1× ⋯ × SN→ R we derive sufficient conditions for existence and uniqueness of homomorphisms Fn: Sn→ R, n= 1 , ⋯ , N, such that F(s1, ⋯ , sN) = F1(s1) ⋯ FN(sN) for all s1∈ S1, ⋯ , sN∈ SN.
KW - decomposition
KW - homomorphism
KW - product semigroup
KW - Semigroup
UR - http://www.scopus.com/inward/record.url?scp=85122934014&partnerID=8YFLogxK
U2 - 10.1007/s00025-022-01603-w
DO - 10.1007/s00025-022-01603-w
M3 - Journal article
AN - SCOPUS:85122934014
VL - 77
JO - Results in Mathematics
JF - Results in Mathematics
SN - 1422-6383
IS - 2
M1 - 60
ER -