Abstract
An explicit classification of homogeneous quaternionic Kahler structures by real tensors is derived and we relate this to the representation-theoretic description found by Fino. We then show how the quaternionic hyperbolic space ℍH(n) is characterised by admitting homogeneous structures of a particularly simple type. In the process we study the properties of different homogeneous models for ℍH(n).
Originalsprog | Engelsk |
---|---|
Tidsskrift | Transformation Groups |
Vol/bind | 11 |
Nummer | 4 |
Sider (fra-til) | 575-608 |
Antal sider | 34 |
ISSN | 1083-4362 |
DOI | |
Status | Udgivet - 1 dec. 2006 |
Udgivet eksternt | Ja |