HMMploidy: inference of ploidy levels from short-read sequencing data

Samuele Soraggi*, Johanna Rhodes (Medlem af forfattersamarbejde), Isin Altinkaya (Medlem af forfattersamarbejde), Oliver Tarrant (Medlem af forfattersamarbejde), Francois Balloux (Medlem af forfattersamarbejde), Matthew C Fisher (Medlem af forfattersamarbejde), Matteo Fumagalli*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

4 Citationer (Scopus)

Abstract

The inference of ploidy levels from genomic data is important to understand molecular mechanisms underpinning genome evolution. However, current methods based on allele frequency and sequencing depth variation do not have power to infer ploidy levels at low-and mid-depth sequencing data, as they do not account for data uncertainty. Here we introduce HMMploidy, a novel tool that leverages the information from multiple samples and combines the information from sequencing depth and genotype likelihoods. We demonstrate that HMMploidy outperforms existing methods in most tested scenarios, especially at low-depth with large sample size. We apply HMMploidy to sequencing data from the pathogenic fungus Cryptococcus neoformans and retrieve pervasive patterns of aneuploidy, even when artificially downsampling the sequencing data. We envisage that HMMploidy will have wide applicability to low-depth sequencing data from polyploid and aneuploid species.

OriginalsprogEngelsk
Artikelnummere60
TidsskriftPeer Community Journal
Vol/bind2
ISSN2804-3871
DOI
StatusUdgivet - okt. 2022

Emneord

  • NGS sequencing
  • ploidy
  • Genotype likelihoods

Fingeraftryk

Dyk ned i forskningsemnerne om 'HMMploidy: inference of ploidy levels from short-read sequencing data'. Sammen danner de et unikt fingeraftryk.

Citationsformater