Heisenberg parabolically induced representations of Hermitian Lie groups, Part II: Next-to-minimal representations and branching rules

Jan Frahm*, Clemens Weiske, Genkai Zhang

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingBidrag til bog/antologiForskningpeer review

29 Downloads (Pure)

Abstract

Every simple Hermitian Lie group has a unique family of spherical representations induced from a maximal parabolic subgroup whose unipotent radical is a Heisenberg group. For most Hermitian groups, this family contains a complementary series, and at its endpoint sits a proper unitarizable subrepresentation. We show that this subrepresentation is next-to-minimal in the sense that its associated variety is a next-to-minimal nilpotent coadjoint orbit. Moreover, for the Hermitian groups $\operatorname{SO}_0(2,n)$ and $E_{6(-14)}$ we study some branching problems of these next-to-minimal representations.
OriginalsprogEngelsk
TitelSymmetry in Geometry and Analysis, Volume 2 : Festschrift in Honor of Toshiyuki Kobayashi
Antal sider30
UdgivelsesstedSingapore
ForlagBirkhäuser Verlag
Publikationsdatomar. 2025
Sider197-226
Kapitel6
ISBN (Trykt)978-981-97-7661-0
ISBN (Elektronisk)978-981-97-7662-7
DOI
StatusUdgivet - mar. 2025
NavnProgress in Mathematics
Vol/bind358
ISSN0743-1643

Emneord

  • math.RT

Fingeraftryk

Dyk ned i forskningsemnerne om 'Heisenberg parabolically induced representations of Hermitian Lie groups, Part II: Next-to-minimal representations and branching rules'. Sammen danner de et unikt fingeraftryk.
  • Symmetry Breaking in Mathematics

    Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)

    01/08/201931/07/2024

    Projekter: ProjektForskning

Citationsformater