Projekter pr. år
Abstract
Every simple Hermitian Lie group has a unique family of spherical representations induced from a maximal parabolic subgroup whose unipotent radical is a Heisenberg group. For most Hermitian groups, this family contains a complementary series, and at its endpoint sits a proper unitarizable subrepresentation. We show that this subrepresentation is next-to-minimal in the sense that its associated variety is a next-to-minimal nilpotent coadjoint orbit. Moreover, for the Hermitian groups $\operatorname{SO}_0(2,n)$ and $E_{6(-14)}$ we study some branching problems of these next-to-minimal representations.
Originalsprog | Engelsk |
---|---|
Titel | Symmetry in Geometry and Analysis, Volume 2 : Festschrift in Honor of Toshiyuki Kobayashi |
Antal sider | 30 |
Udgivelsessted | Singapore |
Forlag | Birkhäuser Verlag |
Publikationsdato | mar. 2025 |
Sider | 197-226 |
Kapitel | 6 |
ISBN (Trykt) | 978-981-97-7661-0 |
ISBN (Elektronisk) | 978-981-97-7662-7 |
DOI | |
Status | Udgivet - mar. 2025 |
Navn | Progress in Mathematics |
---|---|
Vol/bind | 358 |
ISSN | 0743-1643 |
Emneord
- math.RT
Fingeraftryk
Dyk ned i forskningsemnerne om 'Heisenberg parabolically induced representations of Hermitian Lie groups, Part II: Next-to-minimal representations and branching rules'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Symmetry Breaking in Mathematics
Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)
01/08/2019 → 31/07/2024
Projekter: Projekt › Forskning