Hashcube: A Data Structure for Space- and Query-Efficient Skycube Compression

Kenneth Sejdenfaden Bøgh, Sean Chester, Darius Sidlauskas, Ira Assent

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

12 Citationer (Scopus)

Abstract

The skyline operator returns records in a dataset that provide optimal trade-offs of multiple dimensions. It is an expensive operator whose query performance can greatly benefit from materialization. However, a skyline can be executed over any subspace of dimensions, and the materialization of all subspace skylines, called the skycube, dramatically multiplies data size. Existing methods for skycube compression sacrifice too much query performance; so, we present a novel hashing- and bitstring-based compressed data structure that supports orders of magnitude faster query performance.
OriginalsprogEngelsk
TitelProceedings of The 23rd ACM International Conference on Information and Knowledge Management (CIKM 2014)
RedaktørerJianzhong Li , X. Sean Wang
Antal sider4
ForlagAssociation for Computing Machinery
Publikationsdatonov. 2014
Sider1767-1770
ISBN (Trykt)978-1-4503-2598-1
DOI
StatusUdgivet - nov. 2014
BegivenhedACM International Conference on Conference on Information and Knowledge Management - Shanghai, Kina
Varighed: 3 nov. 20147 nov. 2014
Konferencens nummer: 23

Konference

KonferenceACM International Conference on Conference on Information and Knowledge Management
Nummer23
Land/OmrådeKina
ByShanghai
Periode03/11/201407/11/2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Hashcube: A Data Structure for Space- and Query-Efficient Skycube Compression'. Sammen danner de et unikt fingeraftryk.

Citationsformater