Projekter pr. år
Abstract
The skyline operator returns records in a dataset that provide optimal trade-offs of multiple dimensions. It is an expensive operator whose query performance can greatly benefit from materialization. However, a skyline can be executed over any subspace of dimensions, and the materialization of all subspace skylines, called the skycube, dramatically multiplies data size. Existing methods for skycube compression sacrifice too much query performance; so, we present a novel hashing- and bitstring-based compressed data structure that supports orders of magnitude faster query performance.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of The 23rd ACM International Conference on Information and Knowledge Management (CIKM 2014) |
Redaktører | Jianzhong Li , X. Sean Wang |
Antal sider | 4 |
Forlag | Association for Computing Machinery |
Publikationsdato | nov. 2014 |
Sider | 1767-1770 |
ISBN (Trykt) | 978-1-4503-2598-1 |
DOI | |
Status | Udgivet - nov. 2014 |
Begivenhed | ACM International Conference on Conference on Information and Knowledge Management - Shanghai, Kina Varighed: 3 nov. 2014 → 7 nov. 2014 Konferencens nummer: 23 |
Konference
Konference | ACM International Conference on Conference on Information and Knowledge Management |
---|---|
Nummer | 23 |
Land/Område | Kina |
By | Shanghai |
Periode | 03/11/2014 → 07/11/2014 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Hashcube: A Data Structure for Space- and Query-Efficient Skycube Compression'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
WallViz: Improving decision making from massive data collections using wall-sized, highly interactive visualizations
Assent, I. (Deltager), Mortensen, M. L. (Deltager), Magnani, M. (Deltager) & Bøgh, K. (Deltager)
01/04/2011 → …
Projekter: Projekt › Forskning