Hardware Implementation of a Resource-Efficient Router for Multi-Core Spiking Neural Networks

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

1 Citationer (Scopus)

Abstract

Spiking neural networks (SNNs) are envisioned to be a better alternative to artificial neural networks (ANNs) for targeted applications. Multi-core implementation of SNNs has been built to achieve a resource-efficient design. However, managing the spike traffic congestion while routing the spikes between different cores requires a performance-resource tradeoff to avoid any packet loss. This paper presents a novel router architecture servicing ongoing packets in a 2-D mesh network while guaranteeing no packet drop. Here, the packets are distributed across different paths to reduce spike traffic. The proposed router suitable for a 16 × 16 network occupies an area of 0.001mm2 in 28nm CMOS technology, while consuming 75 fJ/transmission.

OriginalsprogEngelsk
TitelISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings
ForlagIEEE
Publikationsdato2023
Sider1-5
ISBN (Trykt)978-1-6654-5109-3
ISBN (Elektronisk)9781665451093
DOI
StatusUdgivet - 2023
BegivenhedIEEE International Symposium on Circuits and Systems - Monterey, USA
Varighed: 21 maj 202325 maj 2023

Konference

KonferenceIEEE International Symposium on Circuits and Systems
Land/OmrådeUSA
ByMonterey
Periode21/05/202325/05/2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Hardware Implementation of a Resource-Efficient Router for Multi-Core Spiking Neural Networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater