H-type foliations

Fabrice Baudoin, Erlend Grong, Luca Rizzi*, Gianmarco Vega-Molino

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

4 Citationer (Scopus)

Abstract

With a view toward sub-Riemannian geometry, we introduce and study H-type foliations. These structures are natural generalizations of K-contact geometries which encompass as special cases K-contact manifolds, twistor spaces, 3K-contact manifolds and H-type groups. Under an horizontal Ricci curvature lower bound on these structures, we prove a sub-Riemannian diameter upper bounds and first eigenvalue estimates for the sub-Laplacian. Then, using a result by Moroianu-Semmelmann [38], we classify the H-type foliations that carry a parallel horizontal Clifford structure. Finally, we prove an horizontal Einstein property and compute the horizontal Ricci curvature of these spaces in codimension more than 2.

OriginalsprogEngelsk
Artikelnummer101952
TidsskriftDifferential Geometry and its Application
Vol/bind85
ISSN0926-2245
DOI
StatusUdgivet - dec. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'H-type foliations'. Sammen danner de et unikt fingeraftryk.

Citationsformater