Aarhus Universitets segl

Groundwater level prediction using machine learning models: A comprehensive review

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisReviewForskningpeer review

  • Hai Tao, Ankang University, Baoji University of Arts and Sciences, Universiti Teknologi MARA
  • ,
  • Mohammed Majeed Hameed, Al-Maarif University College
  • ,
  • Haydar Abdulameer Marhoon, Al-Ayen University, University of Kerbala
  • ,
  • Mohammad Zounemat-Kermani, Shahid Bahonar University of Kerman
  • ,
  • Salim Heddam, Hydraulics Division University
  • ,
  • Kim Sungwon, Dongyang University
  • ,
  • Sadeq Oleiwi Sulaiman, University Of Anbar
  • ,
  • Mou Leong Tan, Universiti Sains Malaysia
  • ,
  • Zulfaqar Sa'adi, Universiti Teknologi Malaysia
  • ,
  • Ali Danandeh Mehr, Antalya Bilim University
  • ,
  • Mohammed Falah Allawi, University Of Anbar
  • ,
  • S. I. Abba, King Fahd University of Petroleum and Minerals, Yusuf Maitama Sule University, Kano
  • ,
  • Jasni Mohamad Zain, Universiti Teknologi MARA
  • ,
  • Mayadah W. Falah, Al-Mustaqbal University College
  • ,
  • Mehdi Jamei, Shahid Chamran University of Ahvaz
  • ,
  • Neeraj Dhanraj Bokde
  • Maryam Bayatvarkeshi, Malayer University
  • ,
  • Mustafa Al-Mukhtar, University of Technology- Iraq
  • ,
  • Suraj Kumar Bhagat, Ton Duc Thang University
  • ,
  • Tiyasha Tiyasha, Ton Duc Thang University
  • ,
  • Khaled Mohamed Khedher, King Khalid University, Mrezgua University Campus
  • ,
  • Nadhir Al-Ansari, Luleå University of Technology
  • ,
  • Shamsuddin Shahid, Faculty of Engineering
  • ,
  • Zaher Mundher Yaseen, University of Southern Queensland, Al-Ayen University


OriginalsprogEngelsk
TidsskriftNeurocomputing
Vol/bind489
Sider (fra-til)271-308
Antal sider38
ISSN0925-2312
DOI
StatusUdgivet - jun. 2022

Bibliografisk note

Funding Information:
The authors would like to thank Al-Mustaqbal University College for providing technical support for this research.

Publisher Copyright:
© 2022 The Authors

Se relationer på Aarhus Universitet Citationsformater

ID: 262880982