Du er her: AU »
Om AU »
Organisation
» Groundwater level prediction using machine learning models
Groundwater level prediction using machine learning models: A comprehensive review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Review › Forskning › peer review
- Hai Tao, Ankang University, Baoji University of Arts and Sciences, Universiti Teknologi MARA
, - Mohammed Majeed Hameed, Al-Maarif University College
, - Haydar Abdulameer Marhoon, Al-Ayen University, University of Kerbala
, - Mohammad Zounemat-Kermani, Shahid Bahonar University of Kerman
, - Salim Heddam, Hydraulics Division University
, - Kim Sungwon, Dongyang University
, - Sadeq Oleiwi Sulaiman, University Of Anbar
, - Mou Leong Tan, Universiti Sains Malaysia
, - Zulfaqar Sa'adi, Universiti Teknologi Malaysia
, - Ali Danandeh Mehr, Antalya Bilim University
, - Mohammed Falah Allawi, University Of Anbar
, - S. I. Abba, King Fahd University of Petroleum and Minerals, Yusuf Maitama Sule University, Kano
, - Jasni Mohamad Zain, Universiti Teknologi MARA
, - Mayadah W. Falah, Al-Mustaqbal University College
, - Mehdi Jamei, Shahid Chamran University of Ahvaz
, - Neeraj Dhanraj Bokde
- Maryam Bayatvarkeshi, Malayer University
, - Mustafa Al-Mukhtar, University of Technology- Iraq
, - Suraj Kumar Bhagat, Ton Duc Thang University
, - Tiyasha Tiyasha, Ton Duc Thang University
, - Khaled Mohamed Khedher, King Khalid University, Mrezgua University Campus
, - Nadhir Al-Ansari, Luleå University of Technology
, - Shamsuddin Shahid, Faculty of Engineering
, - Zaher Mundher Yaseen, University of Southern Queensland, Al-Ayen University
Originalsprog | Engelsk |
---|
Tidsskrift | Neurocomputing |
---|
Vol/bind | 489 |
---|
Sider (fra-til) | 271-308 |
---|
Antal sider | 38 |
---|
ISSN | 0925-2312 |
---|
DOI | |
---|
Status | Udgivet - jun. 2022 |
---|
Funding Information:
The authors would like to thank Al-Mustaqbal University College for providing technical support for this research.
Publisher Copyright:
© 2022 The Authors
Se relationer på Aarhus Universitet
Citationsformater
ID: 262880982