Global temperature projections from a statistical energy balance model using multiple sources of historical data

Mikkel Bennedsen, Eric Hillebrand, Jingying Zhou Lykke

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

This paper estimates a two-component energy balance model as a linear state-space system (EBM-SS model) using historical data. It is a joint model for the temperature in the mixed layer, the temperature in the deep ocean layer, and radiative forcing. The EBM-SS model allows for the modeling of nonstationarity in forcing and the incorporation of multiple data sources for the unobserved processes.We estimate the EBM-SS model using historical datasets at the global level for the period 1955-2020 by maximum likelihood. We show in the empirical estimation and in simulations that using multiple data sources for the unobserved processes reduces parameter estimation uncertainty. When fitting the EBM-SS model to six observational global mean surface temperature (GMST) anomaly series, the GMST projections under representative concentration pathway scenarios are comparable to those from CoupledModel Intercomparison Project models. The results show that a simple statistical climate model estimated on the historical period can produce GMST projections compatible with output from large-scale Earth system models.

OriginalsprogEngelsk
TidsskriftJournal of Climate
Vol/bind36
Nummer19
Sider (fra-til)6817-6838
Antal sider22
ISSN0894-8755
DOI
StatusUdgivet - okt. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Global temperature projections from a statistical energy balance model using multiple sources of historical data'. Sammen danner de et unikt fingeraftryk.

Citationsformater