Aarhus University Seal / Aarhus Universitets segl

Geometry of $B\times B$-orbit closures in equivariant embeddings

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Institut for Matematiske Fag
Let X denote an equivariant embedding of a connected reductive group G over an algebraically closed field k. Let B denote a Borel subgroup of G and let Z denote a B×B-orbit closure in X. When the characteristic of k is positive and X is projective we prove that Z is globally F-regular. As a consequence, Z is normal and Cohen–Macaulay for arbitrary X and arbitrary characteristics. Moreover, in characteristic zero it follows that Z has rational singularities. This extends earlier results by the second author and M. Brion.
TidsskriftAdvances in Mathematics
Sider (fra-til)626-646
StatusUdgivet - 2007

Se relationer på Aarhus Universitet Citationsformater

ID: 10371216