Geometry of $B\times B$-orbit closures in equivariant embeddings

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    Abstract

    Let X denote an equivariant embedding of a connected reductive group G over an algebraically closed field k. Let B denote a Borel subgroup of G and let Z denote a B×B-orbit closure in X. When the characteristic of k is positive and X is projective we prove that Z is globally F-regular. As a consequence, Z is normal and Cohen–Macaulay for arbitrary X and arbitrary characteristics. Moreover, in characteristic zero it follows that Z has rational singularities. This extends earlier results by the second author and M. Brion.
    OriginalsprogEngelsk
    TidsskriftAdvances in Mathematics
    Vol/bind216
    Sider (fra-til)626-646
    ISSN0001-8708
    DOI
    StatusUdgivet - 2007

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Geometry of $B\times B$-orbit closures in equivariant embeddings'. Sammen danner de et unikt fingeraftryk.

    Citationsformater